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Abstract. The Relativistic Hartree-Bogoliubov model is applied in the analysis of ground-state properties
of Be, B, C, N, F, Ne and Na isotopes. The model uses the NL3 effective interaction in the mean-field
Lagrangian, and describes pairing correlations by the pairing part of the finite-range Gogny interaction
D1S. Neutron separation energies, quadrupole deformations, nuclear matter radii, and differences in radii
of proton and neutron distributions are compared with recent experimental data.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 21.10.Gv Mass and neutron distribu-
tions – 27.20.+n 6 ≤ A ≤ 19 – 27.30.+t 20 ≤ A ≤ 38

1 Introduction and outline of the model

During the last decade a large quantity of data on light
nuclei with 4 ≤ Z ≤ 12 has become available. In par-
ticular, measurements of interaction cross-sections by us-
ing radioactive nuclear beams at intermediate and rela-
tivistic energies, have provided important data on nuclear
radii [1–9]. The nuclear radius is a fundamental quan-
tity which, in principle, provides information on the ef-
fective nuclear potential, shell effects and ground-state
deformation. For exotic nuclei with extreme values of
the neutron-to-proton ratio, particularly important is the
isospin dependence of nuclear radii which can signal the
onset of new phenomena like, for example, the formation
of skin and halo structures. Data on ground-state deforma-
tions are also very important for the study of shell effects
in exotic nuclei. In particular, they reflect major modifi-
cations in the shell structures, the disappearance of stan-
dard and the occurrence of new magic numbers. Different
ground-state deformations of proton and neutron density
distributions are expected in some nuclei with extreme
isospin projection quantum number Tz. Another source of
information on the effective nuclear potential in exotic sys-
tems at the limits of stability are the single-nucleon sepa-
ration energies. The neutron drip line has been reached for
nuclei up to Z = 9 [10]. On the proton-rich side the drip
line has been experimentally fully mapped up to Z = 21,
and possibly for odd-Z nuclei up to In [11,12]. In very
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neutron-rich nuclei the weak binding of the outermost
neutrons causes the formation of the neutron skin on the
surface of a nucleus, and the formation of one- and two-
neutron halo structures. The established two-neutron halo
nuclei are 6He, 11Li, and 14Be, and the one-neutron halo
nuclei are 11Be and 19C. Recent data [8,9] present evidence
for a one-neutron halo in 22N, 23O and 24F. The formation
of the neutron skin is well established in the neutron-rich
Na isotopes [3,5], and the related phenomenon of low-lying
pygmy isovector dipole resonances has recently been ob-
served in O isotopes [13]. On the proton-rich side evidence
has been reported for the existence of a proton skin in
20Mg [14], and a beautiful example of exotic decay modes
is provided by the two-proton emitter 18Ne [15].

In the present work the Relativistic Hartree-
Bogoliubov (RHB) model is applied in the analysis of
ground-state properties of Be, B, C, N, F, Ne and Na iso-
topes. Based on the relativistic mean-field theory and on
the Hartree-Fock-Bogoliubov framework, the RHB model
provides a unified description of mean-field and pairing
correlations. It has been successfully applied in the de-
scription of nuclear-structure phenomena in exotic nuclei
far from the valley of β-stability and of the physics of the
drip lines. On the neutron-rich side RHB studies include:
the halo phenomenon in light nuclei [16,17], properties
of light nuclei near the neutron drip [18], the reduction
of the spin-orbit potential in nuclei with extreme isospin
values [19], the deformation and shape coexistence phe-
nomena that result from the suppression of the spherical
N = 28 shell gap in neutron-rich nuclei [20], properties of



38 The European Physical Journal A

neutron-rich Zr nuclei [21,22], Ni and Sn isotopes [23–25].
In proton-rich nuclei the RHB model has been used to
map the drip line from Z = 31 to Z = 73, and the phe-
nomenon of ground-state proton radioactivity has been
studied [26–28]. In a study of the isovector channel of the
RHB model [29], a very good agreement with experimen-
tal data has been obtained for ground-state properties of
nuclei that belong to the A = 20 isobaric sequence.

In the framework of the Relativistic Mean-Field
(RMF) approximation [30] nucleons are described as point
particles that move independently in the mean fields which
originate from the nucleon-nucleon interaction. The the-
ory is fully Lorentz invariant. Conditions of causality and
Lorentz invariance impose that the interaction is mediated
by the exchange of point-like effective mesons, which cou-
ple to the nucleons at local vertices: the isoscalar scalar
σ-meson, the isoscalar vector ω-meson and the isovector
vector ρ-meson. The model is based on the one-boson ex-
change description of the nucleon-nucleon interaction. We
start from the effective Lagrangian density

L = ψ̄ (iγ · ∂ −m)ψ
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Vectors in isospin space are denoted by arrows, and
boldfaced symbols will indicate vectors in ordinary three-
dimensional space. The Dirac spinor ψ denotes the nu-
cleon with mass m. mσ, mω, and mρ are the masses of
the σ-meson, the ω-meson, and the ρ-meson, respectively.
gσ, gω, and gρ are the corresponding coupling constants for
the mesons to the nucleon. e2/4π = 1/137.036. The cou-
pling constants and unknown meson masses are parame-
ters, adjusted to fit data of nuclear matter and of finite
nuclei. U(σ) denotes the non-linear σ self-interaction [31]
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and Ωµν , ~Rµν , and Fµν are field tensors:

Ωµν = ∂µων − ∂νωµ, (3)

~Rµν = ∂µ~ρ ν − ∂ν~ρµ, (4)

Fµν = ∂µAν − ∂νAµ. (5)

The lowest order of the quantum field theory is the mean-
field approximation: the meson field operators are replaced
by their expectation values. The A nucleons, described
by a Slater determinant |Φ〉 of single-particle spinors
ψi, (i = 1, 2, . . . , A), move independently in the classical
meson fields. The sources of the meson fields are defined
by the nucleon densities and currents. The ground state
of a nucleus is described by the stationary self-consistent
solution of the coupled system of Dirac and Klein-Gordon

equations. In the static case for an even-even system,
time-reversal invariance forbids currents in the nucleus,
and therefore the spatial vector components ω,ρ3 and A

of the vector meson fields vanish. The Dirac equation reads
{

− iα ·∇ + β(m+ gσσ) + gωω
0

+gρτ3ρ
0
3 + e

(1− τ3)

2
A0

}

ψi = εiψi (6)

In addition to the self-consistent mean-field potential,
pairing correlations have to be included in order to de-
scribe ground-state properties of open-shell nuclei. In the
framework of the relativistic Hartree-Bogoliubov model,
the ground state of a nucleus |Φ〉 is represented by the
product of independent single-quasiparticle states. These
states are eigenvectors of a generalized single-nucleon
Hamiltonian that contains two average potentials: the self-
consistent mean-field Γ̂ which encloses all the long-range
particle-hole (ph) correlations, and a pairing field ∆̂ which
sums up the particle-particle (pp) correlations. In the
Hartree approximation for the self-consistent mean field,
the relativistic Hartree-Bogoliubov equations read
(

ĥD −m− λ ∆̂

−∆̂∗ −ĥD +m+ λ

)(

Uk(r)

Vk(r)

)

=Ek

(

Uk(r)

Vk(r)

)

.

(7)

where ĥD is the single-nucleon Dirac Hamiltonian (6), and
m is the nucleon mass. The chemical potential λ has to
be determined by the particle number subsidiary condi-
tion in order that the expectation value of the particle
number operator in the ground state equals the number
of nucleons. ∆̂ is the pairing field. The column vectors de-
note the quasiparticle spinors and Ek are the quasiparticle
energies.

The self-consistent solution of the Dirac-Hartree-
Bogoliubov integro-differential eigenvalue equations and
Klein-Gordon equations for the meson fields determines
the nuclear ground state. For systems with spherical sym-
metry, i.e. single closed-shell nuclei, the coupled system of
equations has been solved using finite element methods in
coordinate space [17,32], using the shooting method with
Runge-Kutta alghoritms in coordinate space [24,25], and
by expansion in a basis of a spherical harmonic oscilla-
tor [23]. For deformed nuclei the present version of the
model does not include solutions in coordinate space. The
Dirac-Hartree-Bogoliubov equations and the equations for
the meson fields are solved by expanding the nucleon
spinors Uk(r) and Vk(r), and the meson fields, in terms of
the eigenfunctions of a deformed axially symmetric oscilla-
tor potential [33]. For nuclei at the drip lines, however, so-
lutions in configurational representation might not provide
an accurate description of properties that crucially depend
on the spatial extension of nucleon densities, as for exam-
ple nuclear radii. In less exotic nuclei on the neutron-rich
side, or for proton-rich nuclei, an expansion in a large
oscillator basis should provide sufficiently accurate solu-
tions. In particular, proton-rich nuclei are stabilized by
the Coulomb barrier which tends to localize the proton
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density in the nuclear interior and thus prevents the for-
mation of objects with extreme spatial extension. The cal-
culations for the present analysis have been performed by
an expansion in 12 oscillator shells for the fermion fields,
and 20 shells for the boson fields. A simple blocking proce-
dure is used in the calculation of odd-proton and/or odd-
neutron systems. The blocking calculations are performed
without breaking the time-reversal symmetry. A detailed
description of the Relativistic Hartree-Bogoliubov model
for deformed nuclei can be found in ref. [27].

Taking into account that the quasiparticle wave func-
tions in the Hartree-Bogoliubov equations (7) contain

large and small components, the pairing field ∆̂ can be
written in the form

(

∆̂++ ∆̂+−

∆̂−+ ∆̂−−

)

. (8)

By using relativistic potentials with cut-off parameters,
recent calculations of finite nuclei [34] have shown that

the matrix elements of the terms ∆̂−+ and ∆̂+−, which
couple large and small components, are orders of magni-
tude smaller than the matrix elements of the correspond-
ing off-diagonal term σ∇ of the Dirac Hamiltonian hD.
Pairing properties are determined by correlations in an en-
ergy window of a few MeV around the Fermi surface, and
therefore also ∆̂−− has no effect on pairing in finite nuclei.

Thus, a good approximation is to neglect the fields ∆̂−+,

∆̂+− and ∆̂−− in the RHB equations, and to use a non-

relativistic potential in the calculation of the field ∆̂++.

2 Ground-state properties of deformed light

nuclei

In parallel with the experimental work of the last decade,
many theoretical analyses of the structure of nuclei in the
mass region 10 ≤ A ≤ 30 have been performed. Both mi-
croscopic mean-field and shell-model approaches, as well
as various microscopic cluster models, have been used to
study properties of ground and excited states of isotopic
and isobaric sequences, and to describe specific structure
phenomena in exotic nuclei. It has been shown that theo-
retical models reproduce the global trends of nuclear sizes
and binding energies. However, special assumptions have
to be made, or even new models have to be designed, in
order to describe more exotic phenomena like, for exam-
ple, the location of the neutron drip line in oxygen, or the
ground-state deformation of 32Mg.

In ref. [18] we reported spherical RHB calculations of
neutron-rich isotopes of N, O, F, Ne, Na and Mg. By us-
ing several standard RMF effective interactions, we ana-
lyzed the location of the neutron drip line, the reduction
of the spin-orbit interaction, r.m.s. radii, changes in sur-
face properties, and the formation of neutron skins and
of neutron halos. It was shown that, even without taking
into account the deformation of the mean field, the RHB
model correctly describes the global trends of the observed

ground-state properties. The exception is, of course, the
location of the neutron drip line in oxygen, which none of
the RMF effective interactions reproduces.

In the study of ref. [29] we performed deformed RHB
calculations of ground-state properties of nuclei that be-
long to the A = 20 isobaric sequence. The NL3 effective
interaction [35] was used for the mean-field Lagrangian,
and pairing correlations were described by the pairing part
of the finite-range Gogny interaction D1S [36]. This par-
ticular combination of effective forces in the ph and pp
channels has been used in most of our recent applica-
tions of the RHB theory. RHB results for binding ener-
gies, neutron and proton ground-state density distribu-
tions, quadrupole deformations, nuclear matter radii, and
proton radii were compared with available experimental
data. The very good agreement with the observed ground-
state properties as a function of the isospin projection Tz,
led to the conclusion that the isovector channel of the
NL3 interaction is correctly parameterized and that this
effective force can be used to describe not only medium-
heavy and heavy nuclei [23,26–28], but also properties of
relatively light nuclei far from β-stability. Other effective
RMF interactions that have been successfully employed
in the description of ground-state properties of spherical
and deformed nuclei, include the parameter sets NL1 [37],
NL-SH [38], and TM1 [39].

In the present work we apply the RHB model, with
the NL3 + D1S effective interaction, in the analysis
of ground-state properties of Be, B, C, N, F, Ne and
Na isotopic sequences. We perform deformed RHB cal-
culations and compare radii, separation energies and
quadrupole deformations with available experimental data
and with the predictions of the Finite-Range Droplet
Model (FRDM) [40]. Of course, when the RHB equations
are solved in the configuration space of harmonic-oscillator
basis states, for nuclei at the drip lines one does not expect
an accurate description of properties that crucially depend
on the spatial extension of the wave functions of the outer-
most nucleons, especially on the neutron-rich side. Thus,
we do not attempt to describe radii of halo nuclei. We
also do not repeat the spherical calculations of O isotopes,
which can be found in ref. [18].

In fig. 1 we display the proton, neutron and mat-
ter radii, ground-state quadrupole deformations, and one-
neutron separation energies of beryllium isotopes, calcu-
lated with the NL3 + Gogny D1S effective interaction.
The RHB values are compared with the experimental
radii [1,6,8] and separation energies [41]. The calculated
matter radii reproduce the trend of the experimental val-
ues, except for the halo nucleus 11Be [42,43]. For the pro-
ton radii, on the other hand, the theoretical values are con-
siderably lower than the experimental ones [1], especially
for 14Be, though it should be noted that the experimental
proton radius has a very large uncertainty. The calculated
neutron skin in 14Be is very large: rn − rp = 0.71 fm, and
also the deformations of the proton and neutron densities
in this nucleus are very different. 14Be has a large prolate
deformation β2 = 0.36 and the ratio of neutron to proton
quadrupole moments is Qn/Qp = 3.6. The one-neutron
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Fig. 1. Proton, neutron and matter radii, ground-state
quadrupole deformations and one-neutron separation energies
of beryllium isotopes, calculated with the NL3 + Gogny D1S
effective interaction. The theoretical values are compared with
the experimental radii [1,6,8] and separation energies [41].
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Fig. 2. Same as in fig. 1, but for boron isotopes. The experi-
mental radius (diamond) is from ref. [7].

separation energies are also in excellent agreement with
the empirical values [41]. In particular, 13Be is predicted
to be unbound by 180 keV.

In fig. 2 the same comparison is shown for neutron-rich
boron isotopes. The calculated matter radii are in excel-
lent agreement with the recent experimental data [6,7] for
17B and 19B, while they are larger than the older exper-
imental values [1] for 14B and 15B. Unlike in the case of
Be, the calculated proton radii for these two nuclei agree
well with the empirical values, but the theoretical neutron
radii are much larger. The RHB calculation also predicts
14B and 15B to be spherical in the ground state, while
the heavier boron isotopes are strongly prolate deformed.
We find a sudden onset of strong deformation at A = 16.
The experimentally observed Q-moments change rather
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Fig. 3. Proton, neutron and matter radii, skin thicknesses,
ground-state quadrupole deformations, one-neutron separation
energies and energy differences between prolate and oblate
minima for carbon isotopes. The theoretical values are com-
pared with the experimental radii [44,8] and separation ener-
gies [41].

smoothly from |Q(13B)| = 36.9 mb over |Q(15B)| = 38.0
mb to |Q(17B)| = 38.8 mb. This can be explained as a de-
ficiency of the mean-field theory, which shows always very
sharp phase transitions reflecting the properties of infi-
nite systems where fluctuations can be neglected. In such
light nuclei fluctuations play an important role and there-
fore the experimental quadrupole moments change usually
much more smoothly than those predicted by mean-field
calculations. The separation energies agree with the em-
pirical values [41], and we note that both 16B and 18B are
predicted to be neutron unbound.

The calculated quantities which characterize the
ground states of neutron-rich carbon isotopes are dis-
played in fig. 3. The proton radius of 14C is compared
with the experimental value from ref. [44], and the matter
radii are shown in comparison with very recent experimen-
tal data [8]. The trend of the experimental matter radii
is clearly reproduced by the RHB calculation. Of course,
for the one-neutron halo nucleus 19C [45] the calculation
in the harmonic-oscillator configuration space cannot re-
produce the anomalous matter radius. The RHB model
predictions for the one-neutron separation energies are in
agreement with the empirical values [41], though the the-
oretical values are slightly larger for the even-N isotopes.
In particular, from an analysis of the angular distribution
of the 18C + n center of mass [46], the neutron separation
energy is determined to be 530 ± 130 keV, and the RHB
calculated value is 510 keV. 14C and 22C are spherical,
and all other neutron-rich carbon isotopes, except 17C,
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have oblate ground states. We have to keep in mind, how-
ever, that there are always two minima, one with prolate
and one with oblate deformation, which are often very
close in energy. In fig. 3 we therefore also plot the energy
differences between these two minima. In 15C and in 16C
we find very small differences of only a few hundred keV.
It depends on fine details of the single-particle spectrum,
which of these two minima is lower. It turns out that the
mean-field theory is not always accurate enough to de-
scribe such details properly and therefore it can happen
that the sign of the deformation is not properly repro-
duced in the calculation. This is a general property of
mean-field calculations. One example is the nucleus 15C,
which is found to be oblate in our calculations. This means
that we put the last neutron in the K = 5/2 orbit. Experi-
mentally the ground state of this isotope has spin 1/2, i.e.
one expects in this case a prolate deformation, i.e. the sign
of the deformation is not properly reproduced in this case.

The RHB results for nitrogen isotopes are shown in
fig. 4. The proton radii are compared with the experi-
mental values from ref. [44]. The calculated matter radii
reproduce the global trend of the experimental data [8],
but not the sudden increase of the radii at N = 15. In
the recent measurement of the interaction cross-sections
for 14–23N, 16–24O, and 18–26F on carbon targets at rel-
ativistic energies [8], a sharp increase of matter radii at
N = 15 was observed in all three isotopic chains (see also
fig. 6). The deduced matter radii for 22N, 23O, and 24F are
much larger than those of their respective neighbors with
one neutron less, and the deduced nucleon density distri-
butions show a long neutron tail for these nuclei, com-
parable to that in 11Be. It was therefore concluded that
these three nuclei exhibit a one-neutron halo structure.
Since they are spherical, the halo structure should result
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Fig. 5. Self-consistent RHB neutron and proton density pro-
files of nitrogen isotopes.

from the odd neutron occupying the 2s1/2 orbital. The ab-
sence of the centrifugal barrier for an s-orbital facilitates
the formation of the long tail of the wave function, i.e.
the halo structure. However, in ref. [8] it was also noted
that the one-neutron separation energies for 22N, 23O, and
24F are larger than 1 MeV (1.22± 0.22 MeV, 2.74± 0.12
MeV and 3.86±0.11 MeV, respectively), and much larger
than in 11Be and 19C. In a recent analysis [47] it has been
pointed out that the conventional fixed core-plus-neutron
model for halo nuclei is unable to explain the observed en-
hanced cross-section for these nuclei with any selection of
neutron orbitals, and therefore a possibility of an enlarged
core structure has been suggested. Experimental evidence
of core modification in the near-drip nucleus 23O has been
recently reported in ref. [48].

The present RHB calculation reproduces the empiri-
cal one-neutron separation energies [41]. In particular, for
22N we even obtain a slightly lower one-neutron separa-
tion energy, and the theoretical matter radius coincides
with the one deduced from the experimental interaction
cross-section. Also for 23N, the calculated and empirical
separation energies coincide, and the theoretical matter
radius is only slightly below the large experimental er-
ror bar. The main difference is in the matter radii of the
lighter isotopes (a similar situation also occurs for the flu-
orine isotopes, see fig. 6). The calculated radii are some-
what larger than the experimental values and therefore at
N = 15 do not display the sharp discontinuity which, in
ref. [8], is taken as evidence for the formation of the neu-
tron halo. In the present calculation the gradual increase
of matter radii reflects the formation of the neutron skin.
This is shown in the upper right panel of fig. 4, where the
values of rn − rp are plotted as function of the neutron
number, and in fig. 5 we display the self-consistent RHB
neutron and proton ground-state density distributions of
even-N nitrogen isotopes. It should be pointed out, how-
ever, that the formation of the halo structure can only
be observed if calculations were performed in coordinate
space. Moreover, particle number projection might be nec-
essary in order to reproduce the sharp increase of matter
radii. Finally, we note that the RHB NL3 + D1S calcula-
tion predicts the heaviest particle stable nitrogen isotope
to be 23N, in excellent agreement with recent data on the
neutron drip line [10].

Very similar results are obtained for the fluorine iso-
topes. In fig. 6 we compare the RHB theoretical proton,
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neutron and matter radii, and one-neutron separation en-
ergies with the experimental radii [2,8,44] and separation
energies [41]. The calculated matter radii do not reproduce
the discontinuity at N = 15, though for the heaviest iso-
topes they are found within the experimental error bars.
The calculated one-neutron separation energies reproduce
the staggering between even-N and odd-N values. It is
interesting to note that, like in the case of nitrogen, the
RHB model with the NL3 + D1S effective interaction cor-
rectly predicts the location of the drip line [10]: the last
bound isotope of fluorine is 31F. Therefore, in agreement
with experimental data, we obtain that the neutron drip
line is at N = 16 for Z = 7, and at N = 22 for Z = 9.
On the other hand, none of the standard RMF effective
interactions reproduces the location of the drip line for
oxygen. It has been argued that the sudden change in sta-
bility from oxygen to fluorine may indicate the onset of
deformation for the neutron-rich fluorine isotopes [10]. In
the present calculation, however, all fluorine isotopes up
to 31F turn out to be essentially spherical.

In ref. [17] we performed spherical RHB calculations
of the Ne isotopic chain. In particular, we studied the
formation of neutron halo structures in drip line Ne nu-
clei (N > 20). It was shown that the properties of the
1f -2p neutron orbitals near the Fermi level, and the neu-
tron pairing interaction play a crucial role in the possi-
ble formation of the multi-neutron halo. In the present
analysis we have performed calculations in the deformed
harmonic-oscillator basis. In fig. 7 we display the mat-
ter radii, the rn − rp values, the ground-state quadrupole
deformations and the one-neutron separation energies of
Ne isotopes. The matter radii are compared with the re-
cently reported experimental values [9]. The agreement
with experiment is very good. The calculated β2 values
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Fig. 7. Matter radii, diferences between neutron and proton
radii, ground-state quadrupole deformations, and one-neutron
separation energies of neon isotopes. The experimental values
for the matter radii are from ref. [9] The calculated β2 val-
ues are displayed in comparison with the predictions of the
finite-range droplet model [40], and the separation energies are
compared with experimental data [41].

are shown in comparison with the predictions of the finite-
range droplet model [40], and the separation energies are
compared with experimental data [41]. The FRDM and
the present RHB calculation predict a similar mass de-
pendence of the ground-state quadrupole deformation. We
note two spherical regions around A = 16 and A = 28.
Both models reproduce the large prolate deformations
around A = 20, and predict prolate shapes in the region of
possible halo structures A ≥ 30. Pronounced differences in
the predicted β2 values are found for A = 19 and A = 24,
25. The latter probably indicates a region of shape coexis-
tence. For A = 28 the FRDM predicts an oblate β ≈ −0.2
deformation, while a spherical shape is calculated in the
RHB model. The calculated separation energies reproduce
the odd-even staggering and agree quite well with the ex-
perimental values.

The ground-state properties of the Na isotopic se-
quence are illustrated in fig. 8. The one-neutron separa-
tion energies are shown in comparison with experimen-
tal data [41]. The calculated values reproduce the em-
pirical staggering between even- and odd-A isotopes, al-
though for A > 24 the theoretical separation energies are
systematically somewhat larger for the even-N isotopes.
The calculated radii are compared with the experimen-
tal data: matter radii [5], neutron radii [3], and charge
isotope shifts [49]. An excellent agreement between the-
ory and experiment is obtained. For the matter and neu-
tron radii the only significant difference is at A = 22,
but this dip in the experimental sequence has recently
been attributed to an admixture of the isomeric state in
the beam [5]. Except for the lightest isotope shown, i.e.
20Na, the calculated charge isotope shifts reproduce the
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topes. The RHB calculated values are compared with the ex-
perimental data: one-neutron separation energies [41], matter
radii [5], neutron radii [3], charge isotope shifts [49], and with
the β2 values calculated in the finite-range droplet model [40].

Table 1. The calculated quadrupole moments Q (in barns) for
several Na isotopes. The values in the parentheses correspond
to the charge (proton) quadrupole moments Qp.

A Q (b) (Qp (b)) A Q (b) (Qp (b))

20 −0.253 (−0.151) 26 −0.635 (−0.250)
21 0.324 (0.159) 27 −0.688 (−0.274)
22 0.689 (0.302) 28 0.764 (0.356)
23 −0.431 (−0.205) 29 0.689 (0.333)
24 0.450 (0.182) 30 0.154 (0.045)
25 −0.586 (−0.243) 31 0.041 (0.012)

empirical A-dependence. A significant difference between
the theoretical and experimental values is observed only
for A ≥ 29. The calculated ground-state quadrupole defor-
mations of the Na isotopes are compared with the predic-
tions of the finite-range droplet model [40]. We note that,
while the FRDM predicts all Na isotopes with A ≤ 28 to
be strongly prolate deformed, the result of the RHB calcu-
lation is the staggering between prolate and oblate shapes,
indicating the onset of shape coexistence. In particular,
26,27Na are predicted to be oblate, while prolate ground-
state deformations are calculated for 28,29Na. Very recent
experimental data on quadrupole moments of 26–29Na [50]
confirm this prediction. In table 1 we give the calculated
intrinsic quadruple moments Q of the mass and charge
distributions (Q and Qp) for several Na isotopes.
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Our results for matter radii are summarized in fig. 9,
where we plot the calculated values for the A =
14, 15, 16, 17, 18, 19 isobaric chains as functions of the
isospin projection Tz. An excellent overall agreement is
found between the experimental data and the matter radii
calculated with the NL3 + D1S RHB effective interaction.

Finally, in fig. 10 the matter radii of mirror nuclei are
compared as a function of the isospin projection Tz. It
is interesting to note that for ∆Tz = 1, the nuclei with
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Tz > 0 have larger radii than their mirror partners with
Tz < 0. Due to the strong effect of the Coulomb interac-
tion, on the other hand, for ∆Tz = 2 and 3 the proton-rich
nuclei have almost 0.1 fm larger radii than their Tz > 0
mirror partners.

3 Summary

This work presents an analysis of ground-state properties
of Be, B, C, N, F, Ne and Na isotopes in the framework of
the Relativistic Hartree-Bogoliubov (RHB) model. In the
last couple of years this model has been very successfully
applied in the description of nuclear-structure phenomena
in medium-heavy and heavy exotic nuclei far from the val-
ley of β-stability and of the physics of the drip lines. The
present analysis covers a region which is probably at the
low-mass limit of applicability of the mean-field frame-
work. This work is also a continuation of our previous
applications of the RHB model of ref. [18] (spherical RHB
calculations of neutron-rich isotopes of N, O, F, Ne, Na
and Mg), and of ref. [29] (deformed RHB calculations of
ground-state properties of the A = 20 isobaric sequence).

The present calculation has been performed in the
configuration space of deformed harmonic-oscillator ba-
sis states. The NL3 effective interaction has been used
for the mean-field Lagrangian, and pairing correlations
have been described by the pairing part of the finite range
Gogny interaction D1S. The calculated neutron separation
energies, quadrupole deformations, nuclear matter radii,
and differences in radii of proton and neutron distribu-
tions have been compared with very recent experimental
data. For the neutron drip line nucleus 14Be the RHB cal-
culation predicts a large prolate deformation β2 = 0.36
and the ratio of neutron to proton quadrupole moments
Qn/Qp = 3.6. For the neutron-rich boron isotopes, the
calculated matter radii reproduce the recent experimental
data [6] for 17B and 19B. This is an important result, since
19B (Tz = 9/2) has one of the largest N/Z values known
at present in the low-mass region of the nuclear chart.

Even though the present calculation, performed in the
deformed harmonic-oscillator configuration space, cannot
reproduce the anomalous matter radius of the one-neutron
halo nucleus 19C, the neutron separation energy 510 keV
is in excellent agreement with the experimental value
530 ± 130 keV obtained from an analysis of the angular
distribution of the 18C + n center of mass [46]. A large
oblate deformation β2 ≈ −0.4 is predicted for 19C.

The RHB model with the NL3 + D1S effective in-
teraction predicts the location of the neutron drip line
in nitrogen and fluorine in agreement with recent experi-
mental findings [10]: the heaviest particle stable isotopes
are 23N and 31F. The calculation, however, does not re-
produce the location of the neutron drip line in oxygen.
The calculated matter radii of the neutron-rich nitrogen
and fluorine isotopes are in agreement with very recent
experimental data [8]. The sudden increase of the radii
at N = 15, which was taken as evidence for the forma-
tion of the neutron halo, is not reproduced by the present
calculation.

For the neutron-rich neon isotopes the RHB model
predicts pronounced prolate deformations in the region of
possible halo structures (A > 30). The calculated matter
radii are in very good agreement with recent experimen-
tal data [9]. For the Na isotopic sequence the calculated
radii are in excellent agreement with experimental data
on matter radii [5], neutron radii [3], and charge isotope
shifts [49]. The calculated ground-state quadrupole defor-
mations are confirmed by the recent experimental data on
quadrupole moments of 26–29Na [50].
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